PEMF / Magnetotherapy for horses

Magnetotherapy as well as magnetostimulation is a type of physiotherapy that uses a magnetic field to influence the body. This field may be static (with the use of permanent magnets attached to the body) or time-varying/pulsed (produced by a special device).

 

PEMF stands for Pulsed Electro-Magnetic Fields. Devices that utilize PEMF technology integrate inductive (usually copper) coils that generate electric and magnetic fields. The electromagnetic fields generated by these devices have been found to affect a variety of biological processes. Studies have shown a decrease in pain, swelling and inflammation and improvement of circulation and cellular metabolism​. Accumulating clinical evidence supports the use of PEMF therapy in both animals and humans for specific clinical indications including bone healing, wound healing, osteoarthritis, inflammation, and treatment of post-operative pain and edema. It also promotes relaxation, calmness and improves after-performance regeneration.

Portable PEMF devices may be in the form of localized applicators or full body mats.

In my practice I use a veterinary magnetic therapy unit BIOMAG® Lumina Vet. It consist of full a body mat with a detachable hood as well as a small applicator (high intensity light and PEMF).

BIOMAG® Lumina Vet is certified as a Class IIa-medical device within the directive EEC 93/42. The system has a CE-Certificate as well as a more advanced CB-Certificate, which guarantees electronic safety and electromagnetic compatibility. 

50582AA0-F5BD-4617-93BF-47455E865C31.jpeg
28714E3F-006E-4E9B-B011-8184D1993855.jpeg
DD0D0817-85E6-46C6-9F40-F76C87966CEF.heic
390198E1-6FDE-40C6-B595-20CD3BB99C6A.heic
 

THERAPY WITH THE USE OF MAGNETIC FIELD

INTRODUCTION

 

In 1845 the famous scientist Faraday confirmed that every known substance reacts to magnetic field. Simply because when a material is placed within a magnetic field, the magnetic forces of this material's electrons will be affected. Magnetization is easily visible for materials called paramagnetic (that are attracted to magnetic fields), diamagnetic (repelled from magnetic fields) and for ferromagnets. Ferromagnetic substances (also called natural magnets) can be easily magnetized when an external magnetic field is applied to it, and exhibit strong magnetism in the same direction of the field.

 

At the most basic level, all organisms are made of a combination of elements. They contain atoms that combine together to form molecules. Some of them have a magnetic moment which - broadly speaking - means they have a small amount of magnetic energy in them, they may produces a magnetic field and they will be influenced by external magnetic field. The higher the value of magnetic moment, the stronger reaction will be exhibited. 

 

Within the mammal body (human as well as horse or dog) substances known to have a magnetic moment are hemoglobin (protein in red blood cells), some enzymes and free radicals

 
 

Difference between static and pulsed magnetic field

 

A static magnetic field is one in which no change in the flux density or intensity can be found over the time interval of use or measurement. In time-varying magnetic fields, flux density or intensity changes at one or more frequencies, usually greater than one cycle per second (Hz). The nature of time-varied or pulsed electromagnetic fields (PEMFs), means that they have a frequency in addition to an intensity.

 

The Earth's magnetic field at its surface ranges from 25 to 65 μT (microTesla) which is equivalent to 0.25 - 0.65 Gauss and completely penetrates our body and atmosphere. Therefore any static magnet with field strength below this will not be expected to be active. The magnetic field strength of a static magnet decreases with distance from its surface, and once the field drops to or below the ambient background field strength of Earth, it will no longer be effective in the tissues. A time-varying magnetic field is produced by alternating current (AC) electricity, therefore is significantly more dynamic and is able to reach more deeply into the body than static magnetic fields. Unlike static magnetic fields, a time-varying magnetic field induces electric charge in tissues, creating a cascade of physiologic effects on a sub-cellular level.

 

Research revealed that technically easy to obtain and therapeutically useful, are those pulsed magnetic fields of frequencies up to 50Hz and intensity range of 1-10 mT (two orders of magnitude grater that natural Earth field). 

How pulsed magnetic field influences the body

 

Among many mechanisms of biophysical interactions between pulsed low-frequency magnetic fields and organisms there are a few that are significant for biological effects:

 

  • Interactions on uncompensated electron spins - particularly when found within elements of enzymes, will speed up or slow down the enzymatic reactions, depending on the value of induction of applied magnetic field

 

  • Influence on liquid crystals found within cell membranes (such as adrenal cortex, ovaries, spinal cord and more) will change the properties of the cell membranes, cell organelles and, as a consequence, more complex systems

 

  • Influence the electric charges moving within the organism. Proper function of many organs depends on biologically-electric circuits, it means that those organs receive information in the form of electric charges. If the charge direction is deviated or changed it will affect the function of specific organs

 

  • change of some physical-chemical properties of water - water is the main component of the body and almost always takes part in cellular activities. Under the influence of external magnetic field water changes its physical properties such as pH, moisturizing, concentration of dissolved gasses (specifically oxygen), rate of crystallization, rate of coagulation or speed of subsidence suspensions

 

  • Induction of gradient potential between cell membranes which results in motion of ions. This process is specially intensive in cardiovascular, lymphatic, nervous, muscular and endocrine systems

 

  • Influence on depolarization of cells with intrinsic property of automatism like heart muscle cells or nervous cells. Electric activity of heart, brain and nervous system has a certain frequency imposed by pacemakers, that may be influenced with external magnetic fields. According to actual research, low frequency pulsed magnetic fields used for therapeutical purposes affects primarily nervous system

 

  • Influence on piezoelectric and magnetostriction structures. Magnetostricion is a property of ferromagnetic substances which causes them to expand or contract in response to a magnetic field. Piezoelectric is the ability of certain materials to generate an electric charge in response to applied mechanical stress. Some substances within the mammal body have a piezoelectric abilities for example: collagen (protein in connective tissues like skin), creatine (protein in muscles) or dentine (component of teeth). For instance a flexure of the bone will result in the electrochemical gradient between its ends which may lead to current flow. Due to this biological current, the concentration of cells on the more loaded part will be higher, which sometimes may be even seen on radiological images. Therefore the change of shape of certain substances within the body caused by external magnetic field (magnetostrsiction) will influence at some point the end result of body activity.

 

Proposed mechanisms of PEMF therapy include activation of voltage-gated calcium channels to increase intracellular calcium and nitric oxide release (Pilla, 2015). Nitric oxide promotes blood vessel production and growth, which is helpful in healing injured tissues (Pilla, 2015).

In mammal body, as complicated as it is, very rarely one mechanism is determining the work of a particular organ or complicated structural unit. In most cases mechanisms works in cooperation, but their mutual relations still need to be studied. Those mechanisms are responsible for biological effects. In terms of use of magnetic fields, the best known and understood effects are stimulating effects on cellular respiration and tissue regeneration processes. Those effects were confirmed by scientist experimentally. Increased diffusion and oxygen uptake by hemoglobin results in better cellular utilization of oxygen and tissue respiration.

 

References:

1. Brown C., Parker N., Ling F., Effect of magnets on chronic pelvic pain, Monday Posters 95(4), 2000, 29S.

2. Smania N., Corato E., Fiaschi A., Therapeutic effects of peripheral repetitive magnetic stimulation on myofascial pain syndrome, Clinical Neurophysiology 114(2), 2003, 350-358.

3. Vallbona C., Hazlewood C.F., Jurida G., Response of pain to static magnetic fields in postpolio patients: a double-blind pilot study, Arch Phys Med Rehabil. 1997 Nov;78(11):1200-3.

4. Maestú C., Blanco M., Nevado A., Romero J., Rodríguez-Rubio P., Galindo J., Bautista Lorite J., de las Morenas F., Fernández-Argüelles P., Reduction of pain thresholds in fibromyalgia after very low-intensity magnetic stimulation: a double- blinded, randomized placebo-controlled clinical trial, Pain Res Manag. 2013 Nov- Dec;18(6):e101-6.

5. Sutbeyaz S.T., Sezer N, Koseoglu F, Kibar S., Low-frequency pulsed elec- tromagnetic field therapy in fibromyalgia: a randomized, double-blind, sham- controlled clinical study, Clin J Pain. 2009 Oct;25(8):722-8.

6. Thomas A.W., Graham K., Prato F.S., McKay J., Forster P.M., Moulin D.E., Chari S., A randomized, double-blind, placebo-controlled clinical trial using a low- frequency magnetic field in the treatment of musculoskeletal chronic pain, Pain Res Manag. 2007 Winter;12(4):249-58.

7. Woldańska-Okońska M., Pola magnetyczne niskiej częstotliwości – Rehabi- litacja w praktyce 2, 29-31,2009.

8. Woldańska M., Czernicki J., Ocena skuteczności magnetostymulacji w fizjo- terapii (badania ankietowe), Wiadomości Lekarskie, 58, 1-2: 44-49, 2004.

9. Taradaj J., Sieroń A., Jarzębski M., Fizykoterapia w praktyce, Elamed, Kato- wice 2010.

10. Kasprzak W., Mańkowska A., Fizykoterapia, medycyna uzdrowiskowa i SPA, 193-207, PZWL 2008.

11. Bauer A., Wiecheć M., Przewodnik metodyczny po wybranych zabiegach fizykalnych, Wydawnictwo Markmed Rehabilitacja s.c., Wrocław 2012.

12. Sieroń A., Cieślar G., Pole magnetyczne i światło w medycynie i fizjoterapii, Wydawnictwo α-medica press, 2013.

111

13. Sieroń A., Cieślar G., Adamek M., Zastosowanie zmiennego pola magne- tycznego w medycynie. Fizjoterapia. 1994, 2(4), 22-24.

14. Woldańska-Okońska M., Czernicki J., Skutki biologiczne oddziaływania pól (elektro)magnetycznych niskiej częstotliwości wywierane poprzez ich wpływ na wydzielanie hormonów. Przeg. Lek. 2003, 60, 10, 657-662.

15. Sieroń A., Zastosowanie pól magnetycznych w medycynie, Alfamedica, Biel- sko-Biała 2002.

16. Janicki J., Zastosowanie stałego pola magnetycznego w terapii, PIW Primax Medic Sp. z o.o. Poznań 2009.

17. Janicki J.S. (red.), Zastosowanie stałych pól magnetycznych w terapii, Insty- tut Badań Fizykomedycznych, Poznań 2008.

18. Pasek J., Pasek T., Sieroń A., Stałe pole magnetyczne w medycynie – aktual- ny stan wiedzy, JEcolHealth, vol 17, nr 1, styczeń- marzec 2013: 21-26.

19. Janicki J.S., Janicki Ł.J., Wpływ gradientowego pola magnetycznego na or- ganizm człowieka, Acta Bio-Optica et Informatica Medica 4, 300-301, 2008.

20. Taradaj J., Sieroń A., Jarzębski M., Fizykoterapia w praktyce, Wydawnictwo Elamed, Katowice 2010.

21. Janicki J.S., Fizyczne podstawy oraz biologiczne mechanizmy oddziaływania multigradientowych systemów stałego pola magnetycznego na organizm człowieka, Instytut Badań Fizykomedycznych, Poznań 2014.

22. Duda D., Sieroń A., Wpływ magnetostymulacyjnego wolnozmiennego pola na krew in vitro. Acta Bio-Optica et Informatica Medica. 2003, 9, 135-139.

23. Del Carratore R., et al., Effect of magnetic fields on rodent monooxygenase enzymes. Bioelectromagnetics. 1995, 16 (5), 324-329.

24. Werner H., Wpływ pola magnetycznego na proces usprawniania po rekon- strukcji więzadła krzyżowego przedniego, Rozprawa doktorska, Uniwersytet Me- dyczny im. Karola Marcinkowskiego w Poznaniu, 21-23, Poznań 2010.

25. Sieroń A., Cieślar G., Krawczyk – Krupka A i wsp., Zastosowanie pól ma- gnetycznych w medycynie, Wydanie II, α – medica press, Bielsko-Biała 2002.

26. Barnes F., Greenebaum S., Handbook B., Bioengineering and Biophysical Aspects of Electromagnetic Fields – third edition, CRP Press, 2006: 203-260.

112

27. Janicki J.S., Energy for life – alternatywa czy konieczność?, Rehabilitacja w praktyce 2, 15, 2009.

28. Samborski W., Kołaczewska A., Zastosowanie stałego pola magnetycznego w leczeniu chorych na fibromialgię, Medical News (4) vol. 64, (45-52), Poznań 1993.

29. Jaroszyk F., Biologiczne oddziaływanie stałych pól magnetycznych, Katedra Biofizyki, Akademia Medyczna w Poznaniu, Monografia, Wyd. Akademii Medycz- nej w Poznaniu, Poznań 1992.

30. Janicki J.S., Wpływ stałego pola magnetycznego na łagodzenie przebiegu wybranych chorób oraz urazów, Rehabilitacja w praktyce 4, 37, 2009.

31. Janicki J.S., Terapia niejednorodnym stałym polem magnetycznym, Gazeta Kuracjusza, nr 11/12 (40/41), Uzdrowiska Polskie 40-43, 2008.

32. Sieroń A., Biniszkiewicz T., Sieroń K., i wsp., Subiektywna ocena efektów leczniczych słabych pól magnetycznych, Acta Biooptica Inf. Med. 4, 133-137, 1998. [46]. Woldańska-Okońska M., Czernicki J., Działanie przeciwbólowe pól magne- tycznych o różnej charakterystyce. Acta Bio-Opt. Inf. Med. , 8, 5-9, 2002.

33. Eccles N., A critical review of randomized controlled trials of static magnets for pain relief, J Altern Complement Med 2005 Jun, 11(3), 495-509.

34. Colbert A.P., Wahbeh H., Harling N., Connelly E., Schiffke H.C., Forsten C., Gregory W.L., Markov M.S., Souder J.J., Elmer P., King V., Static Magnetic Field Therapy: A Critical Review of Treatment Parameters, eCAM Advance Acces pub- lished online on October 4, 2007.

35. Goodman E.M., Henderson A.S., Exposure of salivarygland cells to low fre- quency electromagnetic fields alters polipeptid synthesis, Proc. Natl. Acad. Sci. USA 1988, 3928-3932.

36. Tenforde T.S., Biological interactions of extrememly low frequency electric and magnetic fields, Bioelectrochem. Bioenerg., 1991, 25, 1-17.

37. Williams C. D., et al., Therapeutic electromagnetic field effects on angiogen- esis and tumor growth. Anticancer Res. 2001, 21(6A): 3887-3891.

38. Sieroń A., Pasek J., Pole magnetyczne w leczeniu ran, Rehabilitacja 11, 4/2013: 48-51.

39. Cieślar G. i wsp., Zastosowanie zmiennych pól magnetycznych w leczeniu ran. Leczenie Ran. 2005, 2(4): 99-106.

40. Zhao L., Zhao D.M., Wei J.H., Yan G.D., WangY.O., Huangz. M., Compari- son of effects of 5 and 20 Hz magnetic field on cerebral ischemia in rats. Space Med. Med. Eng., 2001, 14: 41-44.

41. Pisula A., Jackowska E. Trojańska A., Łazowski J., Wpływ jednorazowej magnetostyrnulacji na elektryczną pobudliwość mięśni, Acta Bio.opt. Inform. Med., 2004, 10, (3-4): 119-I22.

42. Matavulj M., Rajkovitc V., Uscebrka G.,Zikic D., Stevanovic D., Lazetic B., Electromagnetic field effects on the morphology of rat thyroid gland W: Electricity and Magnetism in Biology and Medicine. Bersani F. (ed.), Kluwer Academ- ic/Plenum Publishers, New York-Boston-Dordrecht-London-Moscow 1999: 489- 492.

43. Jutrzenka-Jesion J., Ocena wpływu stałych i wolno zmiennych pól magnetycznych na mięśniowo-powięziowe zespoły bólowe, PhD thesis, Poznań, 2015.